70 research outputs found

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The genetic contribution to longevity in humans has been estimated to range from 15% to 25%. Only two genes, APOE and FOXO3, have shown association with longevity in multiple independent studies.We conducted a meta-analysis of genome-wide association studies including 6,036 longevity cases, age ≥90 years, and 3,757 controls that died between ages 55 and 80 years. We additionally attempted to replicate earlier identified single nucleotide polymorphism (SNP) associations with longevity.In our meta-analysis, we found suggestive evidence for the association of SNPs near CADM2 (odds ratio [OR] = 0.81; p value = 9.66 × 10(-7)) and GRIK2 (odds ratio = 1.24; p value = 5.09 × 10(-8)) with longevity. When attempting to replicate findings earlier identified in genome-wide association studies, only the APOE locus consistently replicated. In an additional look-up of the candidate gene FOXO3, we found that an earlier identified variant shows a highly significant association with longevity when including published data with our meta-analysis (odds ratio = 1.17; p value = 1.85×10(-10)).We did not identify new genome-wide significant associations with longevity and did not replicate earlier findings except for APOE and FOXO3. Our inability to find new associations with survival to ages ≥90 years because longevity represents multiple complex traits with heterogeneous genetic underpinnings, or alternatively, that longevity may be regulated by rare variants that are not captured by standard genome-wide genotyping and imputation of common variants.Netherlands Organisation of Scientific Research NWO Investments 175.010.2005.011 911-03-012 Research Institute for Diseases in the Elderly 014-93-015 RIDE2 Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) 050-060-810 Erasmus Medical Center Erasmus University, Rotterdam Netherlands Organization for the Health Research and Development (ZonMw) Research Institute for Diseases in the Elderly (RIDE) Ministry of Education, Culture and Science Ministry for Health, Welfare and Sports European Commission (DG XII) Municipality of Rotterdam National Institutes of Health National Institute on Aging (NIA) R01 AG005407 R01 AR35582 R01 AR35583 R01 AR35584 R01 AG005394 R01 AG027574 R01 AG027576 AG023629 R01AG29451 U01AG009740 RC2 AG036495 RC4 AG039029 P30AG10161 R01AG17917 R01AG15819 R01AG30146 U01-AG023755 U19-AG023122 NHLBI HHSN 268201200036C HHSN268200800007C N01HC55222 N01HC85079 N01HC85080 N01HC85081 N01HC85082 N01HC85083 N01HC 85086 HL080295 HL087652 HL105756 National Institute of Neurological Disorders and Stroke (NINDS) National Center for Advancing Translational Sciences, CTSI UL1TR000124 National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) DK063491 National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Center for Research Resources (NCRR) NIH Roadmap for Medical Research U01 AR45580 U01 AR45614 U01 AR45632 U01 AR45647 U01 AR45654 U01 AR45583 U01 AG18197 U01-AG027810 UL1 RR024140 NIAMS R01-AR051124 RC2ARO58973 National Heart, Lung and Blood Institute's Framingham Heart Study N01-HC-25195 Affymetrix, Inc N02-HL-6-4278 Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine Boston Medical Center National Institute of Arthritis, Musculoskeletal and Skin Diseases NIA R01 AR/AG 41398 NIH N01-AG-12100 NIA Intramural Research Program Hjartavernd (the Icelandic Heart Association) Althingi (the Icelandic Parliament) Illinois Department of Public Health Translational Genomics Research Institute Italian Ministry of Health ICS110.1/RF97.71 U.S. National Institute on Aging 263 MD 9164 263 MD 821336 Intramural Research Program of the NIH, National Institute on Aging 1R01AG028321 1R01HL09257

    Diverse perspectives on interdisciplinarity from the Members of the College of the Royal Society of Canada

    Get PDF
    Various multiple-disciplinary terms and concepts (although most commonly “interdisciplinarity”, which is used herein) are used to frame education, scholarship, research, and interactions within and outside academia. In principle, the premise of interdisciplinarity may appear to have many strengths; yet, the extent to which interdisciplinarity is embraced by the current generation of academics, the benefits and risks for doing so, and the barriers and facilitators to achieving interdisciplinarity represent inherent challenges. Much has been written on the topic of interdisciplinarity, but to our knowledge there have been few attempts to consider and present diverse perspectives from scholars, artists, and scientists in a cohesive manner. As a team of 57 members from the Canadian College of New Scholars, Artists, and Scientists of the Royal Society of Canada (the College) who self-identify as being engaged or interested in interdisciplinarity, we provide diverse intellectual, cultural, and social perspectives. The goal of this paper is to share our collective wisdom on this topic with the broader community and to stimulate discourse and debate on the merits and challenges associated with interdisciplinarity. Perhaps the clearest message emerging from this exercise is that working across established boundaries of scholarly communities is rewarding, necessary, and is more likely to result in impact. However, there are barriers that limit the ease with which this can occur (e.g., lack of institutional structures and funding to facilitate cross-disciplinary exploration). Occasionally, there can be significant risk associated with doing interdisciplinary work (e.g., lack of adequate measurement or recognition of work by disciplinary peers). Solving many of the world’s complex and pressing problems (e.g., climate change, sustainable agriculture, the burden of chronic disease, and aging populations) demand thinking and working across long-standing, but in some ways restrictive, academic boundaries. Academic institutions and key support structures, especially funding bodies, will play an important role in helping to realize what is readily apparent to all who contributed to this paper—that interdisciplinarity is essential for solving complex problems; it is the new norm. Failure to empower and encourage those doing this research will serve as a great impediment to training, knowledge, and addressing societal issues

    A genome-wide association study of aging

    Get PDF
    AbstractHuman longevity and healthy aging show moderate heritability (20%–50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity

    The complex genetics of gait speed:Genome-wide meta-analysis approach

    Get PDF
    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging

    A genome-wide association study of early menopause and the combined impact of identified variants

    Get PDF
    Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smokin

    Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>

    Get PDF
    Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi
    corecore